
Scriptable Blendshapes Documentation 
For instant replies to advanced queries about using Scriptable Blendshapes in your game, you 
can use our custom code-support GPT that is trained on source code for both scriptable blend 
shapes, and Unity Engine. Note: There are usage restrictions for users without plus accounts.  

Support GPT: https://chatgpt.com/g/g-d38LSkZ7s-scriptable-blendshapes-code-assistant


1) Introduction Page 2 

2) Key Features Page 3 

3) Supported Unity Versions Page 4 

4) Use cases Page 5 

5) Installation Page 7 

6) Core Components Page 8 

7) Editor Tools Page 11 

8) Runtime Tools Page 21 

9) Performance Considerations Page 22 

10) Detailed Workflow and Tutorials Page 23 

11)  Troubleshooting: Common Issues and Solutions Page 27 

12) Appendices, Public Methods & Glossary Page 29 

 of 1 34 Back to Table of Contents

https://chatgpt.com/g/g-d38LSkZ7s-scriptable-blendshapes-code-assistant


1) Introduction 
The Scriptable Blendshapes asset is a powerful Unity tool designed to simplify and 
enhance the management of blendshapes in 3D models, particularly for character 
animation and customization. By leveraging Scriptable Objects to store blendshape 
data, this asset allows for advanced automation, batch editing, and hierarchical 
organization of blendshapes, which can significantly improve workflows in projects with 
complex character rigs and facial animations.


Key Problems Solved: 

1. Tedious Blendshape Management: In projects with numerous blendshapes, 
managing them through Unity's default interface can become cumbersome. 
Scriptable Blendshapes allows you to organize blendshapes into logical groups, 
classes, and subtypes, making them easier to search, filter, and manipulate both in 
the editor and at runtime. 

2. Improved Readability and Maintainability of Scripts: Unity's default method for 
controlling blendshapes involves referencing them by index, which can make code 
hard to understand and maintain, especially as the number of blendshapes 
increases. The asset provides a solution via the UB3 Code Bridge, allowing 
developers to manipulate blendshapes by name or hierarchical structure instead of 
relying on indices. 

3. Batch Processing: For characters with numerous blendshapes (e.g., for facial 
expressions or body part deformations), individually assigning metadata, weights, 
or making changes can be time-consuming. The Batch Blendshape Editor Tool 
allows you to process multiple blendshapes simultaneously, significantly speeding 
up development time. 

4. Streamlined Customization Systems: The asset allows for easy integration of 
blendshapes into character customization systems. Using the hierarchy structure 
and the UB3 Code Bridge, developers can create intuitive sliders or UI elements for 
users to modify a character’s appearance in real time, without worrying about 
complex scripting or indexing errors. 

 of 2 34 Back to Table of Contents



2) Key Features 
The Scriptable Blendshapes asset provides a range of powerful tools and features that 
enable users to manage and manipulate blendshapes more efficiently in Unity. Here’s a 
breakdown of the key features:


Advanced Blendshape Management Using Metadata 

The core of the asset is built around the BlendshapeMetadata Scriptable Object, which 
allows users to store, organize, and access all relevant data for each blendshape. This 
metadata encapsulates key information such as blendshape names, weights, indices, 
and hierarchical relationships, giving you fine-grained control over how blendshapes 
are processed and manipulated at runtime. By using metadata, blendshapes can be 
batch processed, automated, and easily accessed through intuitive structures, 
reducing the need for manually handling blendshapes in Unity's default system.


Hierarchical Structure for Blendshape Classes, Groups, and Subtypes 

Managing a large number of blendshapes can be overwhelming without proper 
organization. The Blendshape Class Hierarchy system addresses this by allowing you 
to group blendshapes into Classes, Groups, and Subtypes, which creates a logical 
structure for filtering and searching through them. This hierarchical system is fully 
customizable, enabling developers to define categories that make sense for their 
project—whether it's facial expressions (e.g., eyes, mouth, nose) or body deformations. 
The structure can be reused across multiple assets, making it ideal for projects with 
multiple characters or modular meshes.


UB3 Code Bridge for Simplified Scripting 

Writing scripts to control blendshapes is much easier with the UB3 Code Bridge, which 
acts as a bridge between blendshape metadata and custom scripts. Instead of working 
with obscure blendshape index numbers, the UB3 Code Bridge allows developers to 
reference blendshapes by their names, classes, groups, and subtypes. This makes 
code more readable and maintainable, which is especially useful in large projects or 
when multiple team members are involved. The bridge also offers a set of public 
methods for manipulating blendshapes, reducing the amount of custom code needed 
for basic operations such as setting blendshape weights or resetting them.


 of 3 34 Back to Table of Contents



Editor and Runtime Tools for Batch Editing and Automation 

The Batch Blendshape Editor Tool and Blendshape Management Tool provide 
powerful, user-friendly interfaces in the Unity editor to streamline the process of 
managing blendshapes. These tools enable users to:


• Batch process multiple blendshapes at once, assigning class, group, or subtype 
data to large groups of blendshapes.


• Apply consistent changes across many blendshapes in a few clicks, saving 
valuable development time.


• Automate blendshape tasks like setting initial weights, creating presets, and 
reorganizing blendshapes in the hierarchy, ensuring efficient workflows for 
projects with large numbers of blendshapes.


•
Additionally, the UB3 Code Bridge methods can be executed at runtime, allowing 
developers to dynamically adjust blendshapes during gameplay, such as for character 
customization sliders or emotional state systems.


3) Supported Unity Versions: 

• Unity 2021.3 LTS or newer: The asset is compatible with Unity versions from 
2021.3 LTS onwards. It fully supports Unity’s Scriptable Object system and 
works with both all render pipelines. Note: Our demo scene is only for the built-
in render pipeline. 

• Animator Support: The asset works seamlessly with Unity’s Mecanim animation 
system, as well as any other systems that use Skinned Mesh Renderers and 
blendshapes. 

 of 4 34 Back to Table of Contents



4) Use Cases 
The Scriptable Blendshapes asset is a versatile tool that can be applied to a variety of 
scenarios in game development, animation, and interactive applications. Below are 
some common use cases where the asset provides significant benefits:


Facial Animations 

• For games and applications that require real-time facial expressions, the asset 
provides an efficient way to manage and animate blendshapes.


• With the UB3 Code Bridge, you can easily script dynamic facial expressions, 
creating complex reactions like smiling, frowning, blinking, and other facial 
deformations by simply referencing blendshapes by name rather than index 
numbers.


• The hierarchical structure of blendshapes helps developers organize facial 
expressions by categories such as emotions (happy, sad, angry) or specific 
parts of the face (eyes, mouth, eyebrows).


Character Customization 

• The asset is particularly useful in creating character customization systems, 
where users can adjust the appearance of characters in real-time using UI 
sliders or dials.


• By organizing blendshapes into categories such as body type, facial features, or 
clothing adjustments, the tool makes it easy to create an intuitive interface 
where players can control various aspects of the character’s appearance.


• The batch processing tools allow developers to quickly set up large-scale 
customization systems with consistent blendshape groupings across multiple 
characters.


Dynamic In-Game Reactions 

• For games that require in-game reactions (e.g., characters responding to 
attacks, surprises, or emotions), the blendshape hierarchy can be tied to triggers 
and events.


• Using the Emotional State System or Auto Facial Reactions assets (sold 
separately), developers can automate facial animations based on game states 
like health, mood, or interaction with other characters. For example, a character 
can wince or grimace when taking damage, or smile in response to positive 
interactions.


 of 5 34 Back to Table of Contents



Complex Multi-Character Animation Systems 

• In large-scale animation projects with multiple characters, Scriptable 
Blendshapes allows developers to standardize blendshape management across 
different models.


• By reusing BlendshapeClassHierarchy objects, you can maintain consistency in 
blendshape structures across different meshes, making it easier to automate 
and manage multi-character scenes.


Procedural Character Generation 

• The asset integrates smoothly with systems designed for procedural character 
generation, such as random character creation for games with large NPC 
populations.


• Using the Billions of Characters asset (sold separately), the tool can be used to 
generate a virtually infinite number of unique characters by randomly assigning 
weights to blendshapes across various categories (e.g., head size, nose shape, 
eye position), giving each character a unique appearance.


Performance Optimization for Mobile and VR Applications 

• In performance-critical environments such as mobile games or virtual reality, 
where optimization is key, the asset can work alongside the Blendshape 
Optimizer (sold separately) to bake or remove unnecessary blendshapes, 
improving runtime performance without sacrificing quality.


• This makes it possible to use complex blendshapes in highly optimized mobile 
or VR experiences.


 of 6 34 Back to Table of Contents



5) Installation 
To get started with Scriptable Blendshapes, you can import the package in two ways, 
depending on whether you purchased it from the Unity Asset Store or downloaded it 
from our website.


Importing via the Unity Asset Store 

Open Unity and go to the top menu. Select Window > Package Manager. In the 
Package Manager window, search for "Scriptable Blendshapes" under My Assets. If 
you haven’t downloaded it yet, click the Download button. Once downloaded, the 
button will change to Import. Click Import to add the package to your project. Unity will 
then show an import window; ensure all files are selected and confirm the import.


Importing a Unity Package File from the Website 

If you purchased Scriptable Blendshapes from our website, you will receive 
a .unitypackage file. First, save this file to your computer. Then, open Unity and select 
Assets > Import Package > Custom Package from the top menu. Locate and select the 
.unitypackage file you downloaded. Unity will display the package contents in an 
import window. Make sure all files are selected, then click Import.


 of 7 34 Back to Table of Contents



6) Core Components 
The scriptable Blendshapes asset ships with numerous editor tools and runtime 
components that form the basis of the UltimateBlendshapes ecosystem. Below we will 
cover the individual scripts included.


BlendshapeMetadata.cs


The BlendshapeMetadata Scriptable Object is designed to store and manage detailed 
data related to the blendshapes on a mesh. This metadata enables efficient 
organization and automation of blendshape-related tasks, such as processing, filtering, 
and customizing blendshape behavior for runtime applications.


Fields and Properties


The core data structure within BlendshapeMetadata is the BlendshapeData class, 
which defines the following fields for each blendshape:


• masterIndex: The index of the blendshape from the original list, used to track 
its position in the Skinned Mesh Renderer.


• originalName: The original name of the blendshape, as defined in the mesh.


• nameOverride: A user-defined name override for easier identification (if 
needed).


• value: The current weight or value assigned to the blendshape, typically ranging 
from 0 to 100.


• bake: A boolean indicating whether this blendshape should be baked 
(permanently applied to the mesh) during runtime or processing.


• minValue and maxValue: The minimum and maximum values allowed for the 
blendshape’s weight.


• defaultValue: The default value assigned to the blendshape when resetting it to 
its initial state.


• classTag, groupTag, subtypeTag: Tags used to organize the blendshape within 
a broader hierarchy for filtering and classification.


• isProcessed: A boolean flag to track whether this blendshape has been 
processed through tools such as batch editors.


 of 8 34 Back to Table of Contents



Creating and Managing Blendshape Metadata


The BlendshapeMetadata Scriptable Object allows you to manually or 
programmatically add and initialize blendshapes. You can add new blendshapes using 
the AddBlendshape method, which assigns default values and makes it easy to 
manage large numbers of blendshapes across multiple meshes.


You can also initialize all blendshapes using the InitializeBlendshapes method, which 
ensures all blendshapes have default values for class tags, group tags, and weight 
limits. Additionally, the ResetBlendshapeToDefaults method allows you to reset a 
blendshape to its default state, including its weight and organizational tags.


Example workflows include creating metadata for blendshapes used in character 
customization sliders, facial animation systems, or automated expression triggers. By 
organizing blendshapes with the class/group/subtype tags, it becomes easier to 
manipulate blendshapes in both runtime scripts and editor tools.


BlendshapeClassHierarchy.cs


The BlendshapeClassHierarchy Scriptable Object provides a structured way to 
organize blendshapes using a class, group, and subtype system. This hierarchy allows 
for more efficient searches, filtering, and assignments of blendshapes across various 
tools or scripts.


Class, Group, and Subtype System


The hierarchy is structured using two main nested classes:


• ClassGroup: Represents a high-level category (class) for organizing 
blendshapes. Each ClassGroup contains multiple Group objects and includes a 
boolean field (isBaked) to track whether the blendshapes in this class should be 
baked into the mesh.


• Group: A collection of related blendshapes within a ClassGroup. Each Group 
contains a list of subtypes, which further narrows the scope of blendshapes, 
allowing for granular control over specific features or behaviors.


For example, you might create a class called "Facial Expressions" with groups like 
"Mouth" and "Eyes," and then assign subtypes like "Smile" or "Blink" within each 
group.


 of 9 34 Back to Table of Contents



Best Practices for Organizing Blendshapes


When using BlendshapeClassHierarchy, it’s recommended to keep the structure simple 
and intuitive. Avoid overly complex classifications that could complicate your workflow. 
Instead, focus on logically grouping blendshapes by their function (e.g., customization 
sliders, facial features) or purpose (e.g., emotional states, body modifications). This 
organization will help with both runtime manipulation and editor-based management of 
blendshapes.


Sharing Hierarchies Between Assets


One of the key advantages of using BlendshapeClassHierarchy is its ability to be 
shared across multiple meshes or projects. You can create a 
BlendshapeClassHierarchy Scriptable Object in your project and apply it to various 
assets, ensuring consistent organization and streamlined blendshape management 
across different models. This feature is especially useful for projects with multiple 
character assets or meshes that require consistent naming and tagging conventions for 
blendshapes.


By leveraging this hierarchy, you can significantly enhance your workflow, particularly 
when dealing with large-scale projects or complex blendshape setups that need to be 
maintained across different assets.


 of 10 34 Back to Table of Contents



7) Editor Tools 
Blendshape Management Tool (BlendshapeManagementTool.cs)


The Blendshape Management Tool is an editor window that simplifies the process of 
creating, organizing, and managing blendshapes through a user-friendly interface. It 
allows developers to generate and edit BlendshapeMetadata and 
BlendshapeClassHierarchy Scriptable Objects, while efficiently processing and 
managing blendshapes for use in various systems, including character customization 
and animation.


User Interface Breakdown


The interface is divided into three resizable columns:


• First Column: Contains hierarchy settings, filter options, and fields for assigning 
Scriptable Objects such as BlendshapeMetadata and 
BlendshapeClassHierarchy. It allows you to assign a Skinned Mesh Renderer 
and either create or load metadata objects. The search and filter fields in this 
column enable users to quickly locate specific blendshapes based on name, 
class, group, or subtype. 

• Second Column: Displays a list of unprocessed blendshapes. These are 
blendshapes that have not been fully assigned to a class/group/subtype or 
otherwise processed. You can modify their properties directly from this column, 
such as their weight, name override, or baking status. 

• Third Column: Shows the processed blendshapes. These are blendshapes that 
have been organized and are ready for further actions, such as being assigned 
to animations or other systems. The processed column allows you to review and 
edit blendshapes or even reset them back to unprocessed status if necessary. 

 of 11 34 Back to Table of Contents



Detailed Workflow


The Blendshape Management Tool provides a step-by-step approach to managing 
blendshapes:


1. Assign a Skinned Mesh Renderer: In the first column, assign the mesh you want 
to work with by selecting its Skinned Mesh Renderer.


 

2. Create or Assign Metadata: Either create a new BlendshapeMetadata Scriptable 
Object or assign an existing one. You can also create and assign a 
BlendshapeClassHierarchy to categorize and filter your blendshapes by class, 
group, and subtype.


 

3. Filter and Search: Use the search filters to locate specific blendshapes by name, 
class, group, or subtype. This helps streamline workflows, especially when working 
with large meshes that have numerous blendshapes.


 

4. Process Blendshapes: In the second column (unprocessed blendshapes), adjust 
properties like name, value (weight), and baking status. You can also set minimum, 
maximum, and default values for each blendshape.


 

5. Move to Processed: Once a blendshape is fully configured, move it to the 
processed blendshapes column. From there, it can be further edited or marked as 
finalized.


 

6. Save Changes: After processing, save the blendshape metadata to retain the 
changes made to each blendshape. 

 of 12 34 Back to Table of Contents



Practical Examples


• Creating Blendshape Hierarchies: By using the class/group/subtype structure, 
you can organize blendshapes logically. For example, you can create a class 
called "Facial Expressions," with groups like "Mouth" or "Eyes," and subtypes 
such as "Smile" or "Blink." 

• Assigning Metadata: After assigning a Skinned Mesh Renderer and creating 
blendshape metadata, you can quickly manage blendshape weights and 
override names directly within the editor, streamlining the workflow for facial rigs 
or character customization systems. 

• Editing Blendshape Weights: The second and third columns allow you to 
adjust blendshape weights either individually or as part of a batch processing 
operation. 

Common Use Cases


• Managing Facial Animation Blendshapes for Character Rigs: This tool is 
ideal for managing blendshapes that are tied to facial animation systems, 
allowing quick updates to expressions or customizing character faces for 
different emotions. 

• Editing Blendshape Weights for Multiple Blendshapes: When working with 
complex character meshes, the tool allows you to batch edit blendshapes, 
modifying multiple properties at once to ensure consistency across various body 
parts or expressions. 

 of 13 34 Back to Table of Contents



Batch Blendshape Editor Tool (BatchBlendshapeEditorTool.cs) 

The Batch Blendshape Editor Tool is designed to streamline the process of managing 
and assigning blendshape data across multiple blendshapes simultaneously. This tool 
provides batch processing capabilities, allowing developers to efficiently categorize 
and edit multiple blendshapes at once, reducing the time and effort needed for large 
projects or complex character meshes.


User Interface Breakdown


The Batch Blendshape Editor Tool consists of two main columns that facilitate batch 
editing:


• First Column: Filters and Batch List 
This column allows you to assign a SkinnedMeshRenderer, 
BlendshapeMetadata, and BlendshapeClassHierarchy Scriptable Objects. It 
includes filters for searching blendshapes by name, and drop-down menus for 
selecting class, group, and subtype data. There is also a section for managing 
the batch list, displaying selected blendshapes that are queued for batch 
processing. This allows you to assign metadata to multiple blendshapes at 
once. 

• Second Column: Selected Blendshapes for Batch Processing  
This column displays a list of blendshapes—either processed or unprocessed—
depending on the settings in the first column. You can review and modify the 
blendshapes’ metadata, adjust their values, and add them to the batch list for 
processing. The interface allows you to easily search through blendshapes, view 
their details, and apply batch operations. 

 of 14 34 Back to Table of Contents



Batch Processing Workflows


The tool enables quick batch operations for organizing blendshapes into classes, 
groups, and subtypes. Below is a step-by-step guide on how to use the batch 
processing features:


1. Assign Required Objects 
Start by assigning the SkinnedMeshRenderer of the mesh you want to work with. 
Then, assign the BlendshapeMetadata and BlendshapeClassHierarchy Scriptable 
Objects, which will hold the blendshape data and classification structure. 

2. Search and Filter Blendshapes 
Use the search field to filter blendshapes by their original name. This is particularly 
useful when working with a large number of blendshapes. You can toggle between 
unprocessed and processed blendshapes to locate the ones you need to modify. 

3. Select Blendshapes for Batch Processing 
From the list of blendshapes in the second column, you can add individual 
blendshapes to the batch list. These blendshapes will then appear in the batch list 
in the first column. 

4. Assign Class, Group, and Subtype Data  
After adding blendshapes to the batch list, use the drop-down menus in the first 
column to select a class, group, and subtype. Once your selection is made, click 
the "Assign Class" button to apply these tags to all blendshapes in the batch list. 

5. Save and Process 
Once your batch operations are complete, the blendshapes will be updated with 
the new metadata, including their class, group, and subtype tags. The tool ensures 
that blendshapes are reset to their default values where necessary, and the 
metadata is saved automatically. 

 of 15 34 Back to Table of Contents



Common Scenarios


• Bulk Editing Facial Features for Character Customization 
When working on a character customization system, you may need to adjust 
multiple facial blendshapes (e.g., eyes, mouth, eyebrows) at once. The Batch 
Blendshape Editor allows you to quickly assign classifications (such as "Facial 
Features" or "CustomizationSliders") to all relevant blendshapes, ensuring they 
are grouped correctly for future use. 

• Managing Blendshapes for Complex Characters 
In large projects with numerous blendshapes, this tool simplifies the task of 
organizing blendshapes into meaningful categories. For instance, you can 
categorize blendshapes based on their use in animations, customization, or 
other systems, and apply these classifications in bulk to speed up development. 

 of 16 34 Back to Table of Contents



UB3 Bridge Code Generator (UB3BridgeCodeGenerator.cs) 

The UB3 Bridge Code Generator simplifies generating scripts for blendshape 
manipulation, whether using the UB3 Code Bridge or Unity’s default methods. The tool 
makes it easy to generate readable and organized code based on blendshape 
classifications such as class, group, and subtype. This allows for efficient management 
of complex blendshape systems.


Left Column: Blendshape Renderer and Metadata Setup

This section is used to set up the necessary components for blendshape manipulation:

• Skinned Mesh Renderer: This field is where you assign the Skinned Mesh 
Renderer that contains the blendshapes you want to manipulate.

• Blendshape Metadata: This field is used to assign the Blendshape Metadata 
Scriptable Object, which contains information about the blendshapes, including 
their name overrides, classes, groups, and subtypes.

• Class Hierarchy: Here, you assign the Blendshape Class Hierarchy Scriptable 
Object, which organizes blendshapes into a class, group, and subtype structure. 
This makes it easier to reference specific sets of blendshapes in your scripts.

Search and Filter Section

This section provides options to search and filter the blendshapes that will appear in the 
right column for code generation:

• Search by Name: Input a search term to filter blendshapes by their original 
name or name override.

• Search by Original Name?: Toggle this option to switch between searching 
blendshapes by their original name or the custom name override.

• Class, Group, Subtype Filters: These text fields allow you to filter blendshapes 
based on their class, group, and subtype, which are defined in the Blendshape 
Metadata and Class Hierarchy.

 of 17 34 Back to Table of Contents



Code Generation from Hierarchy Section 

In this section, you can generate code for entire classes, groups, or subtypes:

• Class/Group/Subtype Dropdowns: You can select a class, group, and subtype 
from the dropdowns, which are populated based on the Class Hierarchy 
assigned in the previous section.

• Method Dropdown: Select the operation you want to perform on the selected 
class, group, or subtype (e.g., Set, Increase, Decrease, Lerp).

• Value and Duration Inputs: For methods like Set or Lerp, input fields for the 
target value and duration (for smooth transitions) are shown.

• Generate Code Buttons: After selecting the method and input values, click on 
buttons to generate code for the selected class, group, or subtype.

Right Column: Blendshape List and Code Generation 

This section shows the list of blendshapes based on the filters applied:

• Blendshape List: Displays blendshapes from the assigned Blendshape 
Metadata, along with their nameOverride and index.

• Value Slider: Allows real-time manipulation of the blendshape weight via a slider.

• Foldout: Code Generation: Each blendshape has a foldout section with buttons 
to generate code for different operations (Set, Increase, Decrease, Lerp, etc.) for 
that specific blendshape.

Generated Code Output 

At the bottom of the window is a text area where the generated code snippets appear. 
You can copy the generated code to the clipboard or clear it:

• Copy Code to Clipboard: Copies the generated code to your clipboard for use 
in your scripts.

• Clear Generated Code: Clears the current generated code from the window.

This layout simplifies the process of generating script snippets for manipulating 
blendshapes through the UB3 Code Bridge system, making it easy to integrate 
blendshape manipulation into your project.

 of 18 34 Back to Table of Contents



Generating UB3 Code Bridge Scripts


The UB3 Code Bridge enables you to manipulate blendshapes by referencing names 
and tags, rather than relying on numerical indices. This improves code readability and 
maintainability, especially when managing large numbers of blendshapes.


Start by assigning the SkinnedMeshRenderer, BlendshapeMetadata, and 
BlendshapeClassHierarchy in the tool. You can then use the provided filters to search 
for blendshapes by name, class, group, or subtype.


Once you've set the filters, select an operation to apply to the blendshapes. The 
available operations include Set, Increase, Decrease, Reset, and "Smooth Lerp" 
variations of these operations that allow gradual transitions over time. You can apply 
these operations either to specific blendshapes or to groups of blendshapes.


After choosing the operation, click the appropriate button to generate the UB3 Code 
Bridge script. For example, to set the weight of a blendshape by its name, the tool will 
generate the following code:


  ub3CodeBridge.SetBlendshapeWeightByName("BlendshapeName", 50f);      

This approach allows you to work with blendshapes by name, making the code clearer 
and easier to understand compared to using index-based references.


Generating Default Unity Blendshape Scripts


The tool can also generate scripts using Unity's default methods for blendshape 
manipulation, which rely on numerical indices.


For example, if you want to set the weight of a blendshape using its index, the tool 
generates the following code:


  skinnedMeshRenderer.SetBlendShapeWeight(0, 50f);   

This directly modifies the blendshape at index 0, setting its weight to 50. While this 
method is efficient, it can be harder to manage as blendshape indices change or when 
working with a large number of blendshapes.


If you want to transition a blendshape value smoothly over time, the tool can generate 
coroutine-based code like this:


  StartCoroutine(LerpBlendshape(0, 50f, 1f)); // Lerp to 50 over 1 second   

 of 19 34 Back to Table of Contents



Pros and Cons of Using Unity’s Default Methods vs. UB3 Code Bridge


The UB3 Code Bridge offers several benefits. It makes your code easier to read and 
maintain by using human-readable names and classifications instead of numerical 
indices. This is especially valuable in large projects where managing blendshapes by 
index can be cumbersome. However, the UB3 Code Bridge adds a small overhead in 
performance because of the additional layer of abstraction.


Unity's default methods are more efficient at runtime because they directly manipulate 
blendshapes using indices. This makes them a good choice for small projects or 
situations where performance is a priority. However, the reliance on indices makes the 
code harder to maintain in larger projects, especially when blendshape indices change 
or when managing large sets of blendshapes.


The UB3 Bridge Code Generator provides the flexibility to choose the method that best 
suits your project's needs—whether you prioritize readability and maintainability or 
performance and simplicity.


 of 20 34 Back to Table of Contents



8) Runtime Tools 

UB3 Code Bridge (UB3CodeBridge.cs) 

The UB3 Code Bridge component allows developers to easily control blendshapes 
using names and classification tags (such as class, group, and subtype) instead of 
relying on index numbers. This approach improves the readability and maintainability of 
the code while giving users the flexibility to manipulate multiple blendshapes in bulk.


Component Setup 

1) Attach the Component: Add the UB3CodeBridge to a GameObject in your scene.


2) Assign Metadata & Mesh: In the Inspector, assign the Skinned Mesh Renderer of 
the mesh that contains the blendshapes. Then, assign the corresponding 
BlendshapeMetadata Scriptable Object, which stores the blendshape data for the 
mesh.


Public Methods 

The UB3 Code Bridge provides various public methods that allow you to control 
blendshapes easily. For a detailed list visit the Appendices near the end of the 
documentation. Below are a few common examples: 
 

SetBlendshapeWeightByName(string nameOverride, float weight) 
Sets the weight of a specific blendshape using its nameOverride. 

SetBlendshapeWeightByClass(string classTag, float weight) 
Sets the weight for all blendshapes that share the same class.  

SetBlendshapeWeightByGroup(string groupTag, float weight) 
Sets the weight for all blendshapes that share the same group.  

SetBlendshapeWeightBySubtype(string subtypeTag, float weight) 
Sets the weight for all blendshapes that share the same subtype.  

 of 21 34 Back to Table of Contents



9) Performance Considerations 
When using the UB3 Code Bridge in large projects with many blendshapes, you should 
be mindful of performance, especially when using the smooth Lerp methods. Here are 
a few optimization tips:


• Use Bulk Methods: When possible, use methods like 
SetBlendshapeWeightByClass or SetBlendshapeWeightByGroup to modify 
multiple blendshapes at once, reducing the overhead of handling individual 
blendshapes. 

• Cache Blendshape Data: The UB3 Code Bridge caches blendshape indices for 
faster access. Ensure the InitializeBlendshapeMap() method is called to optimize 
the lookup of blendshape names. 

• Avoid Excessive Lerp: While Lerp methods provide smooth transitions, they 
can add performance overhead if used excessively in complex scenes. Limit 
their usage to key interactions or reduce the duration for smoother performance. 

By following these guidelines, the UB3 Code Bridge can be an effective tool for 
managing blendshapes in both small and large-scale projects.


 of 22 34 Back to Table of Contents



10) Detailed Workflow and Tutorials 
To begin working with blendshapes in UB3, the first step is to create a 
BlendshapeMetadata object, which will store information about each blendshape and 
allow for easy manipulation later in the workflow.


Steps to Create BlendshapeMetadata:


1. Open the Blendshape Management Tool from the "Ultimate Blendshapes" menu in 
Unity.


2. Assign a Skinned Mesh Renderer by dragging the mesh (e.g., a character model) 
into the appropriate field.


3. Create New Metadata by clicking the “Create New Blendshape Metadata” button. 
This will generate a Scriptable Object to store all the blendshape data for that 
mesh.


4. Populate Metadata: The tool will automatically detect the blendshapes present in 
the Skinned Mesh Renderer and list them under unprocessed blendshapes.


Example: Setting Up Blendshapes for a Facial Rig For a facial rig, blendshapes 
might include expressions like Smile, Frown, or Blink. Once the blendshapes are 
detected:


• Assign meaningful overrides for the blendshape names if necessary (e.g., 
rename BS_01 to Smile).


• Define the blendshape weight limits (e.g., 0-100 for a standard expression).


• Set default values to ensure consistent behavior across different poses.


 of 23 34 Back to Table of Contents



Organizing Blendshapes with Hierarchies 
Organizing blendshapes into logical hierarchies is essential for simplifying blendshape 
management, especially in complex rigs. The hierarchy system allows you to group 
blendshapes into categories like Eyes, Mouth, and Face and sub-categorize them 
further if needed.


Steps to Create a Class, Group, and Subtype Hierarchy:


1. Open the Blendshape Management Tool and assign the appropriate Blendshape 
Class Hierarchy object.


2. Create New Class Hierarchy by clicking the "Create New Class Hierarchy" button.


3. Define Classes: Create broad categories like FacialExpressions, BodyMorphs, or 
CustomizationSliders.


4. Add Groups within each class. For example, in FacialExpressions, create groups 
like Eyes, Mouth, or Brows.


5. Assign Subtypes within each group to fine-tune the organization. For example, 
under the Mouth group, add subtypes like Smile, Frown, OpenMouth.


Practical Use Case: Organizing Blendshapes for Animation and Customization


Class: FacialAnimation


	 Group: Eyes


	 Subtypes: Blink, Squint, WideOpen


Class: FacialCustomization


	 Group: Eyes


	 Subtypes: Size, Position, Shape


This organization allows you to quickly access and modify related blendshapes in a 
systematic manner, making it ideal for symetrical character animation or customization 
using non-symmetrical blendshapes. 

 of 24 34 Back to Table of Contents



Batch Processing Blendshapes 
The Batch Blendshape Editor allows you to process multiple blendshapes 
simultaneously, greatly speeding up workflows where similar operations need to be 
applied to multiple blendshapes.


Steps to Batch Process Blendshapes: 

1. Open the Batch Blendshape Editor Tool from the “Ultimate Blendshapes” menu.


2. Select Blendshapes: Use the search and filter options to locate the blendshapes 
you want to process.


3. Add Blendshapes to the Batch by selecting the desired blendshapes and adding 
them to the batch list.


4. Apply Metadata: Assign the same class, group, and subtype to all selected 
blendshapes in the batch list.


5. Process the Blendshapes: Hit "Process" to finalize the changes.


Example: Setting Up Blendshapes for Facial Expressions  

When setting up blendshapes for common facial expressions, such as Smile, Frown, 
and Blink:


• Filter all mouth-related blendshapes using the search term “mouth.”


• Add them to the batch list, then assign the class FacialExpressions, group 
Mouth, and the relevant subtype (e.g., Smile or Frown).


• Batch process the list to apply the hierarchy and prepare the blendshapes for 
easy manipulation in your script or UI. 

 of 25 34 Back to Table of Contents



Scripting with the UB3 Code Bridge 
Once your blendshapes are set up and organized, you can use the UB3 Code Bridge to 
write scripts that interact with blendshapes by name or tag, bypassing the need to 
work with index numbers.


Steps to Write Scripts with the UB3 Code Bridge:


1. Assign the UB3 Code Bridge Component to a GameObject in your scene.


2. Reference the Blendshape Metadata and Skinned Mesh Renderer in the Inspector.


3. Call Methods: Use the UB3 Code Bridge’s public methods to manipulate 
blendshapes directly by name, class, group, or subtype.


Example: Creating a Simple UI to Adjust Blendshape Weights You can create a UI 
slider to adjust blendshape weights for character customization, such as controlling 
facial expressions.


In this example, as the slider moves, it will call the SetBlendshapeWeightByName() 
method on the UB3 Code Bridge, dynamically adjusting the Smile blendshape weight 
for the character.


 of 26 34 Back to Table of Contents

//Create a UI slider in Unity. 
//In your script, link the slider’s value to the blendshape weight using the UB3 Code Bridge 
 
 
public UB3CodeBridge codeBridge; 
public Slider BodyFatSlider; 

void Start () { 

    smileSlider.onValueChanged.AddListener (UpdateBodyFatBlendshape); 
} 

void UpdateBodyFatBlendshape (float value) { 

    codeBridge.SetBlendshapeWeightByName(“BodyFat", value); 
}



11) Troubleshooting: Common Issues and Solutions 

Missing Blendshapes in the Editor


Cause: Blendshapes might not appear in the editor if the BlendshapeMetadata or 
Skinned Mesh Renderer is not properly assigned.


Solution:


◦ Verify that the Skinned Mesh Renderer is correctly linked in the 
Blendshape Management Tool.


◦ Ensure that the BlendshapeMetadata is assigned, and that the metadata 
corresponds to the mesh's blendshapes.


◦ If blendshapes are still missing, try refreshing the metadata by 
reinitializing the blendshape map or recreating the BlendshapeMetadata 
object.


Incorrect Weight Assignments


Cause: Incorrect weight assignments often occur when blendshape names in the 
BlendshapeMetadata do not match the actual blendshape names in the Skinned Mesh 
Renderer, or the wrong class/group/subtype has been assigned.


Solution:


◦ Double-check that the nameOverride in BlendshapeMetadata matches 
the actual blendshape name. The UB3 Code Bridge relies on the 
nameOverride for blendshape identification.


◦ Verify that the correct class, group, or subtype tags are assigned, 
especially when using batch processing or scripting with the UB3 Code 
Bridge.


◦ Use the GetBlendshapeWeightByName() method to check if the 
blendshape is correctly identified and its weight can be retrieved.


 of 27 34 Back to Table of Contents



Performance Lags in Large Projects


Cause: Large numbers of blendshapes or frequent use of smooth transition methods 
(Lerp) can lead to performance bottlenecks.


Solution:


◦ Avoid running Lerp-based operations (e.g., 
LerpBlendshapeWeightByName()) excessively during every frame update, 
especially when working with many blendshapes.


◦ Use the UB3 Code Bridge’s batch methods 
(SetBlendshapeWeightByClass(), SetBlendshapeWeightByGroup()) to 
modify multiple blendshapes at once rather than iterating through 
individual blendshapes.


 of 28 34 Back to Table of Contents



12) Appendices 
UB3 Code Bridge Public Methods (UB3CodeBridge.cs) 

• InitializeBlendshapeMap()  
Initializes or refreshes the internal map linking blendshape names (nameOverride) to 
their corresponding blendshape indices. 

• SetBlendshapeWeightByName(string nameOverride, float weight) 
Sets the weight of a specific blendshape using its nameOverride. 

• GetBlendshapeWeightByName(string nameOverride) 
Returns the current weight of a blendshape identified by its nameOverride. 

• IncreaseBlendshapeWeightByName(string nameOverride, float increaseAmount) 
Increases the weight of a blendshape by a specified amount. 

• DecreaseBlendshapeWeightByName(string nameOverride, float decreaseAmount) 
Decreases the weight of a blendshape by a specified amount. 

• SetBlendshapeWeightByClass(string classTag, float weight) 
Sets the weight for all blendshapes that share the same class. 

• SetBlendshapeWeightByGroup(string groupTag, float weight) 
Sets the weight for all blendshapes that share the same group. 

• SetBlendshapeWeightBySubtype(string subtypeTag, float weight) 
Sets the weight for all blendshapes that share the same subtype. 

• ResetAllBlendshapesToDefault()  
Resets all blendshapes to their default values as defined in the BlendshapeMetadata. 

• ResetBlendshapeWeightByClass(string classTag)  
Resets all blendshapes in a specific class to their default values. 

• ResetBlendshapeWeightByGroup(string groupTag)  
Resets all blendshapes in a specific group to their default values. 

 of 29 34 Back to Table of Contents



• ResetBlendshapeWeightBySubtype(string subtypeTag)  
Resets all blendshapes in a specific subtype to their default values. 

• LerpBlendshapeWeightByName(string nameOverride, float targetWeight, float 
duration) 
Smoothly transitions a blendshape's weight to a target value over a specified duration. 

• LerpIncreaseBlendshapeWeightByName(string nameOverride, float 
increaseAmount, float duration) 
Smoothly increases a blendshape's weight by a specified amount over time. 

• LerpDecreaseBlendshapeWeightByName(string nameOverride, float 
decreaseAmount, float duration)  
Smoothly decreases a blendshape's weight by a specified amount over time. 

• LerpResetBlendshapeWeightByName(string nameOverride, float duration) 
Smoothly resets a blendshape's weight to its default value over time. 

• LerpResetBlendshapeWeightByClass(string classTag, float duration) 
Smoothly resets all blendshapes in a specific class to their default values over time. 

• LerpResetBlendshapeWeightByGroup(string groupTag, float duration) 
Smoothly resets all blendshapes in a specific group to their default values over time. 

• LerpResetBlendshapeWeightBySubtype(string subtypeTag, float duration) 
Smoothly resets all blendshapes in a specific subtype to their default values over time. 

• LerpBlendshapeWeightByClass(string classTag, float targetWeight, float duration) 
Smoothly transitions the weight of all blendshapes in a specific class to a target value 
over time. 

• LerpIncreaseBlendshapeWeightByClass(string classTag, float increaseAmount, 
float duration) 
Smoothly increases the weight of all blendshapes in a class over time. 

• LerpDecreaseBlendshapeWeightByClass(string classTag, float decreaseAmount, 
float duration) 
Smoothly decreases the weight of all blendshapes in a class over time. 

• LerpBlendshapeWeightByGroup(string groupTag, float targetWeight, float 
duration) 

 of 30 34 Back to Table of Contents



Smoothly transitions the weight of all blendshapes in a specific group to a target value 
over time. 

• LerpIncreaseBlendshapeWeightByGroup(string groupTag, float increaseAmount, 
float duration) 
Smoothly increases the weight of all blendshapes in a group over time. 

• LerpDecreaseBlendshapeWeightByGroup(string groupTag, float decreaseAmount, 
float duration) 
Smoothly decreases the weight of all blendshapes in a group over time. 

• LerpBlendshapeWeightBySubtype(string subtypeTag, float targetWeight, float 
duration) 
Smoothly transitions the weight of all blendshapes in a specific subtype to a target 
value over time. 

• LerpIncreaseBlendshapeWeightBySubtype(string subtypeTag, float 
increaseAmount, float duration) 
Smoothly increases the weight of all blendshapes in a specific subtype over time. 

• LerpDecreaseBlendshapeWeightBySubtype(string subtypeTag, float 
decreaseAmount, float duration)  
Smoothly decreases the weight of all blendshapes in a specific subtype over time. 

 of 31 34 Back to Table of Contents



Glossary of Terms 
Below is a glossary of some of the terms we use in this documentation 


Blendshape 

A blendshape is a deformable shape in a 3D model that allows for the smooth 
transition between different shapes or expressions. Blendshapes are commonly used 
for character facial expressions (e.g., smiling, frowning, blinking), but can also be used 
for other kinds of morphs, such as muscle flexing or changing body features. In Unity, 
these are controlled via weights (usually between 0% and 100%) that define how much 
a particular blendshape is applied.


Metadata 

Metadata refers to additional data that describes and organizes the blendshapes for a 
particular 3D model. In the context of Scriptable Blendshapes, metadata is stored in a 
BlendshapeMetadata Scriptable Object, which includes important information about 
each blendshape, such as its name, index, weight range, and hierarchical classification 
(class, group, and subtype). This metadata is critical for managing blendshapes 
efficiently in Unity projects.


Blendshape Metadata (BlendshapeMetadata.cs) 

A BlendshapeMetadata Scriptable Object stores the details of each blendshape in a 
mesh, including:


• nameOverride: A user-friendly name for the blendshape.


• masterIndex: The blendshape’s index within the mesh.


• value: The current weight of the blendshape.


• classTag, groupTag, and subtypeTag: Tags used to categorize and organize 
blendshapes hierarchically. The metadata allows you to reference and modify 
blendshapes in a more readable way, especially when using scripting or 
automation tools like the UB3 Code Bridge. 

 of 32 34 Back to Table of Contents



UB3 Code Bridge (UB3CodeBridge.cs) 

The UB3 Code Bridge is a Unity component that bridges the gap between blendshape 
metadata and scripts that manipulate those blendshapes. Instead of using index 
numbers to modify blendshapes (which can be difficult to manage), the UB3 Code 
Bridge allows you to reference blendshapes by their name or hierarchical tags (class, 
group, subtype). This greatly simplifies scripting and makes the code more readable 
and maintainable.


Key features of the UB3 Code Bridge include:


• Setting or retrieving blendshape weights by name.

• Batch setting blendshape weights by class, group, or subtype.

• Smoothly transitioning blendshape weights over time (Lerp functions).


Class, Group, Subtype Hierarchy 

The Class, Group, Subtype Hierarchy is a logical structure used to organize 
blendshapes in a way that simplifies their management and application.


• Class: The broadest category, typically used to separate different types of 
blendshapes (e.g., FacialExpressions, BodyMorphs, CustomizationSliders).


• Group: A subdivision within a class (e.g., Eyes, Mouth, Arms).

• Subtype: The most granular categorization, often referring to specific 

blendshapes within a group (e.g., Smile, Frown, Blink). This hierarchical structure 
helps when applying batch changes or filtering blendshapes, making it easier to 
manage complex rigs or character customization systems.


Skinned Mesh Renderer 

A Skinned Mesh Renderer is a Unity component that renders a 3D model that uses 
bones (for skeletal animation) and blendshapes (for morphing). It allows the model to 
deform and move in complex ways, often used for characters. Blendshapes in the 
Skinned Mesh Renderer can be controlled via scripts or UI components, with their 
weights determining how much each shape is applied. 

 of 33 34 Back to Table of Contents



Lerp (Linear Interpolation) 

Lerp is a common term in programming and game development that refers to linear 
interpolation between two values over time. In the context of blendshapes, Lerp 
methods in the UB3 Code Bridge allow for smooth transitions between current and 
target blendshape weights over a specified duration. This is often used to create 
smooth animations or adjustments for character expressions or morphs.


Batch Processing 

Batch Processing refers to the method of applying the same operation or metadata 
(such as class, group, or subtype assignments) to multiple blendshapes at once. The 
Batch Blendshape Editor tool allows users to streamline their workflow by processing 
multiple blendshapes simultaneously, reducing manual work and ensuring consistency 
across similar blendshapes.


Name Override 

The Name Override is a custom name assigned to a blendshape in the 
BlendshapeMetadata Scriptable Object. This name is used instead of the default 
blendshape name provided by the 3D model, making it easier to reference and manage 
blendshapes in scripts, especially when using the UB3 Code Bridge.


Processed/Unprocessed Blendshapes 

• Processed Blendshapes: These are blendshapes that have been assigned a 
class, group, and subtype, making them easier to reference in scripting and UI 
tools.


• Unprocessed Blendshapes: Blendshapes that have not yet been categorized 
or assigned metadata. These blendshapes can be processed in bulk using tools 
like the Batch Blendshape Editor.


 of 34 34 Back to Table of Contents


	Scriptable Blendshapes Documentation

